ACR MRI Accreditation Program: The Technologist’s Role

Geoffrey D. Clarke, Ph.D.
University of Texas Health Science Center at San Antonio
Radiological Sciences Division

Overview

- ACR MRI Accreditation Program
 - Application process & staff requirements
- ACR MRI QC Phantom
- Clinical Imaging
 - Head, cervical, lumbar & knee
- ACR MRI QC Manual
- Technologist's Responsibilities for QC

ACR MRI Accreditation Program Overview

- Voluntary & Educational in Nature
- Evaluates qualifications of personnel
- Evaluates equipment performance
- Evaluates effectiveness of quality control measures
- Evaluates quality of clinical images
Two-Part Application Process

• Review of the entry application
 – Credentials of physicians, physicists/MR scientists, and technologists
 – Information common to the practice of MRI

• Acquisition of clinical and phantom images
 – Required clinical images consist of routine brain, cervical spine, lumbar spine, and knee
 – Must use a designated MRI phantom
 – Data must be obtained from each full body general purpose magnet at the site

• Appeal process if failure

Technologist Requirements

Technologists performing MRI should:
1. Be certified by ARRT as a MR Technologist, OR
2. Be certified by ARRT and/or state licensure and have 6 months of clinical MRI experience, OR
3. Have an associates degree in an allied health field or a bachelors degree and certification in another clinical imaging field and have 6 months supervised clinical MRI experience

Clinical Images - Acquisition

1. Routine Brain examination (for headache)
 • Sagittal short TR/short TE with dark CSF
 • Axial or coronal long TR/short TE (or FLAIR) and long TR/long TE (e.g., long TR double echo)

2. Routine Cervical Spine (for radiculopathy)
 • Sagittal short TR/short TE with dark CSF
 • Sagittal long TR/long TE or T2*W with bright CSF
 • Axial long TR/long TE or T2*W with bright CSF
Clinical Images - Acquisition

3. Routine Lumbar Spine (for back pain)
 • Sagittal short TR/short TE with dark CSF
 • Sagittal long TR/long TE or T2*W with bright CSF
 • Axial short TR/short TE with dark CSF and/or long TR/long TE with bright CSF

4. Complete Routine Knee examination (for internal derangement)
 • To include sagittal(s) and coronal(s) with at least one sequence with bright fluid

Clinical Images - Evaluation

Each set of clinical images will be evaluated for:
• Pulse sequences and image contrast.
• Filming technique.
• Anatomic coverage and imaging planes.
• Spatial resolution.
• Artifacts.
• Exam ID - All patient information annotated on clinical exams will be kept confidential by the ACR.

Clinical Images - Resolution

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Slice Thickness</th>
<th>Gap</th>
<th>Maximum Pixel Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Brain</td>
<td>≤ 5 mm</td>
<td>≤ 2 mm</td>
<td>≤1.2 mm</td>
</tr>
<tr>
<td>C-spine Sagittal</td>
<td>≤ 3 mm</td>
<td>≤1 mm</td>
<td>≤1 mm</td>
</tr>
<tr>
<td>C-spine Axial</td>
<td>≤ 3 mm</td>
<td>≤1 mm</td>
<td>≤1 mm</td>
</tr>
<tr>
<td>L-spine Sagittal</td>
<td>≤ 5 mm</td>
<td>≤1.5 mm</td>
<td>≤1.5 mm</td>
</tr>
<tr>
<td>L-spine Axial</td>
<td>≤4 mm</td>
<td>≤1 mm</td>
<td>≤1.5 mm</td>
</tr>
<tr>
<td>Knee</td>
<td>≤4 mm</td>
<td>≤1 mm</td>
<td>≤0.75 mm</td>
</tr>
</tbody>
</table>
ACR Phantom Goals

- Tests run in a short time
- Pulse sequences as compatible as possible with all commercial MRI scanners
- Specific measurements to account for:
 - Geometric Distortion
 - Slice Thickness & Position
 - Factors Affecting Image SNR (resolution, bandwidth, ghosting)
 - Image Uniformity
- Affordable ($730)
- Results easily evaluated

Documents for Using Phantom

How to scan...

How to analyze...

$25 per set from ACR

ACR MRI Accreditation Program

MRI Survey Agreement

- Official request for ACR Accreditation
- Site agrees to provide all documentation, including but not limited to quality control logs, films, records, or any necessary information requested by the survey team
- Agree to use the ACR MRI phantom
Technologist Responsibilities

- Designated and trained QC Technologist(s)
- Maintain QC Notebook
 - QC policies and procedures
 - data forms where QC test results are recorded
 - notes on QC problems and corrective actions
- Review QC Data with QA Committee
- Only Use Alternative Phantoms & Procedures when documented by physicist or MRI Scientist
- Follow Action Limits Established by Physicist or MRI Scientist

Technologist's QC Tasks

- Perform image quality tests as appropriate (at least weekly):
 - Central Frequency
 - Signal-to-noise ratio Image Quality
 - High contrast resolution
 - Low contrast detectability
 - Image Artifacts
- Perform weekly checks of hard copy fidelity (processor sensitometry)
- Weekly visual inspection of equipment
Setting Up Routine Image QC

- Daily (weekly) tests
- Develop cheat sheets to speed process
- System for rapid positioning of phantom

TO SET ACTION LIMITS: Review data after first ten days to establish baseline values and variability.

Time to Perform QC

- Set-up Phantom: 2 minutes
- Center Frequency: 1 minute
- Table Positioning: 1 minute
- Setup & Scanning: 3 minutes
- Geometric Accuracy: 5 minutes*
- High Contrast Resolution: 2 minutes*
- Low Contrast Resolution: 1 minute
- Artifact Analysis: 1 minute
- Film Quality Control: 10 minutes
- Visual Checklist: 5 minutes

* Geometric accuracy analysis on sagittal is done while scanning axial

Central Frequency & Transmitter Gain

- Record center frequency value on ACR phantom or manufacturer’s phantom
- Reflects power required to optimize RF pulse:
 - Depends on coil, phantom, pulse sequence, etc.
 - Should remain constant over time if nothing in pulse sequence or hardware has changed
Transmitter Gain Terminology Varies

- **GE**: displayed on screen (dB)
- **Philips**: under system performance parameters
 - rf_act_drivescale
- **Siemens**: “options” – “adjustments”
 - Frequency
 - Transmitter amplitude (temp) (V)
- **Toshiba**: “acquisition window”
 - Center frequency (MHz)
 - RF level

Geometric Accuracy

- Measure distance along main axes of phantom
- Compare with known values

Geometric Accuracy - Axial

Failure Due To:
- Miscalibrated Gradients
- Low Receiver Bandwidth
- High B_0 Inhomogeneities
Percent Geometric Distortion

T1-Weighted, Central Slice

Date of Measurement:

- System #1
- System #2
- System #3

Assessment of MR Image Quality

- Using ACR Phantom
- High Contrast Resolution
- Low Contrast Detectability (also used for SNR)

High Contrast Spatial Resolution

- Evaluate visibility of holes arranged in two square arrays
- Avoid partial-volume artifact from tilting.
High Contrast Resolution

• Specific but not sensitive
• Action Criteria:
 • Any reduction in # of holes seen
• Suggestive of:
 • Increased eddy currents
 • Poor gradient calibration
 • Poor B_0 uniformity
 • Reduced stability of system

Low Contrast Detectability

• Four sets of plastic membranes with holes 1.5 mm to 7 mm in diameter
• Only look at one slice:
 - determined by Physicist/MR Scientist

Low Contrast Detectability

1.5 T System: T1-Weighted Scan

- 1.4% contrast
- 2.4% contrast
- 3.7% contrast
- 5.1% contrast

Date

Hole Size Visualized (mm)

Hole Size Visualized (mm)
Low Contrast Detectability

ACR Slice #8 (1.4% Contrast)

Measurement of System SNR

- Can be performed by technologist
- Method to be used
 - Manufacturer’s method
 - ACR method
- Automated analysis and recording often available on modern MRI systems

LCD and Signal-to-Noise
Artifact Evaluation

- Check for:
 - Distortion?
 - Ghosts in phantom or background?
 - Streaks?
 - Bright or dark spots?
 - New features?

Artifacts

- Good Scan
- Spike
- Drop Out
- DC Offset

ACR MRI Standard
Hardcopy Image QC Tests

- Sensitometric Measurements for Film Processors
- Hard Copy of SMPTE test pattern
- Similar to process used for mammography program
- Laser camera film less sensitive to temperature changes
Laser Film QC

Weekly:
- View SMPTE pattern
- Verify gray levels
 - 0/5% & 95/100% patches
- Film 6 on 1
 - 4 on 1 if necessary
- Plot OD of
 - 10%, 40% & 90% patches
- Observe film for artifacts

Action Limits

<table>
<thead>
<tr>
<th>SMPTE patch</th>
<th>OD</th>
<th>Control Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.45</td>
<td>±0.15</td>
</tr>
<tr>
<td>10%</td>
<td>2.10</td>
<td>±0.15</td>
</tr>
<tr>
<td>40%</td>
<td>1.15</td>
<td>±0.15</td>
</tr>
<tr>
<td>90%</td>
<td>0.30</td>
<td>±0.08</td>
</tr>
</tbody>
</table>

Quality Control Program Records

- Data form for daily (weekly) equipment quality control
 - ACR MRI QC manual, pg. 64
- MRI Facility quality control visual checklist
 - ACR MRI QC manual, pg. 65
- Laser film printer control chart
 - ACR MRI QC manual, pg. 66
If QC Test Fails….

- Common errors-
 - Check for magnetic objects in bore
 - Check connections and reseat head coil
 - Reposition & landmark phantom
 - Make sure scan room door securely closed

- Repeat QC scan procedures
- Record results again in QC notebook

Successful MRI QC Program

1. Technologists run QC scans on a daily basis
2. Set action criteria – repeat QC procedure
3. Physicist reviews QC data quarterly or semiannually
4. Record data - report problems to service
5. Have service record problems and solutions in a service log